3D visualization of spacecraft dynamics

Introduction to MATLAB Simulink 3D animation toolbox

Contents

- Why it is very useful?
- MATLAB Simulink and its 3D animation toolbox
- Basic knowledge to take into account
- Flowchart for the development of a virtual simulator
- Simulation of orbital dynamics
- Simulate of attitude dynamics

3D visualization helps to improve the understanding of the spacecraft's dynamics

Orbital elements

Two-line orbital elements:

- Right ascension of ascending node (Ω)
- Inclination (*i*)
- Eccentricity (*e*)
- Argument of perigee ω)
- Mean anomaly (*M*)
- Mean motion (*n*)

3D visualization helps to improve the understanding of the spacecraft's dynamics

3D visualization helps to improve the understanding of the spacecraft's dynamics

Attitude of a body expressed in Euler angles

3D visualization helps to improve the understanding of the spacecraft's dynamics

Attitude of a body expressed in Euler angles

Easy to understand

3D visualization helps to improve the understanding of the spacecraft's dynamics

Attitude of a body expressed in quaternions

$$q = \begin{bmatrix} q_s \\ q_x \\ q_y \\ q_z \end{bmatrix} = \begin{bmatrix} \cos \frac{\theta}{2} \\ \|\vec{e}\| \cdot \sin \frac{\theta}{2} \end{bmatrix}$$

3D visualization helps to improve the understanding of the spacecraft's dynamics

Attitude of a body expressed in quaternions

3D visualization helps to improve the understanding of the spacecraft's dynamics

3D visualization helps to improve the understanding of the spacecraft's dynamics

MATLAB Simulink and its 3D animation toolbox

Simulink 3D animation toolbox allows the **connection between a physical model and a 3D virtual environment**

MATLAB Simulink and its 3D animation toolbox

Elements required:

Connection between the model and the virtual environment

Basic knowledge to take into account

Inertial and fixed reference frames

Flowchart for the development of a virtual simulator

Simulation of orbital dynamics

Inputs: Initial states Orbital dynamics:

SPG4 Two-body problem High precision orbit propagators

3D visualization:

-Earth (sphere) -Spacecraft (CAD model or box)

Simulation of attitude dynamics

Inputs: Initial states Moment of inertia

Attitude dynamics:

- Rigid body dynamics model
 - Attitude representation:
 - Euler angles
 - Quaternions

Outputs: Spacecraft attitude

3D visualization Spacecraft (CAD model or box)