Systems, Rockets & Nippons

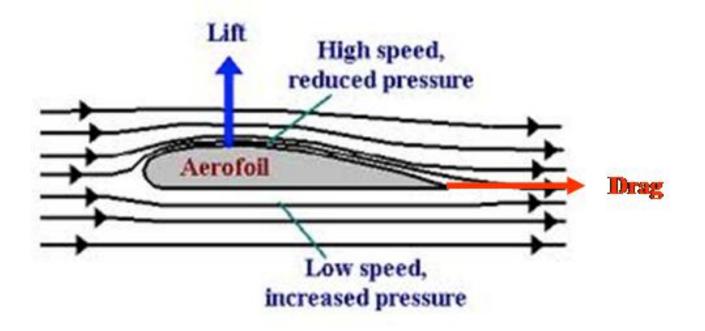
Professor Dianne DeTurris Summer Camp 2019

INTRODUCTION

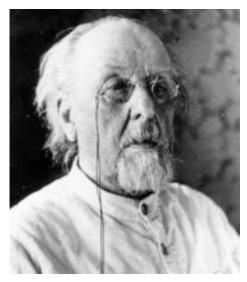
- People and Stars
- People and Rockets
- People and Systems
- People

People are Fascinated with the Stars

- History of flight goes back to the beginning of recorded history
- Many traditions have stories and myths about flight, where gods come down from the heavens
- Arrows start flying
- Then fireworks (without safety helmets)


People Start Trying to Fly

- People actually flying starts with tower jumping
 - wearing a big cloak does not work
- Then comes the connections between birds and fish (da Vinci)
 velocity and pressure are related



Flying: Science Fiction to Science Fact

- Understand the laws of physics (Newton)
- Apply aerodynamics (Bernoulli, Cayley)
- Achieve heavier than air powered flight (Wrights)

People Pioneering Space Flight

<u>The Exploration of Cosmic</u> <u>Space by Means of</u> <u>Reaction Device</u>, 1903

Konstantin Tsiolkovsky

- the first serious scientific work on space travel

<u>A Method of Reaching Extreme</u> <u>Altitudes</u>, 1919

Robert Goddard

- the first serious work on using rockets in space travel
- world's first liquid-fueled rocket

The Rocket into Planetary Space,1923Hermann Oberth

- an early member of the "Society for Space Travel"
- von Braun's mentor

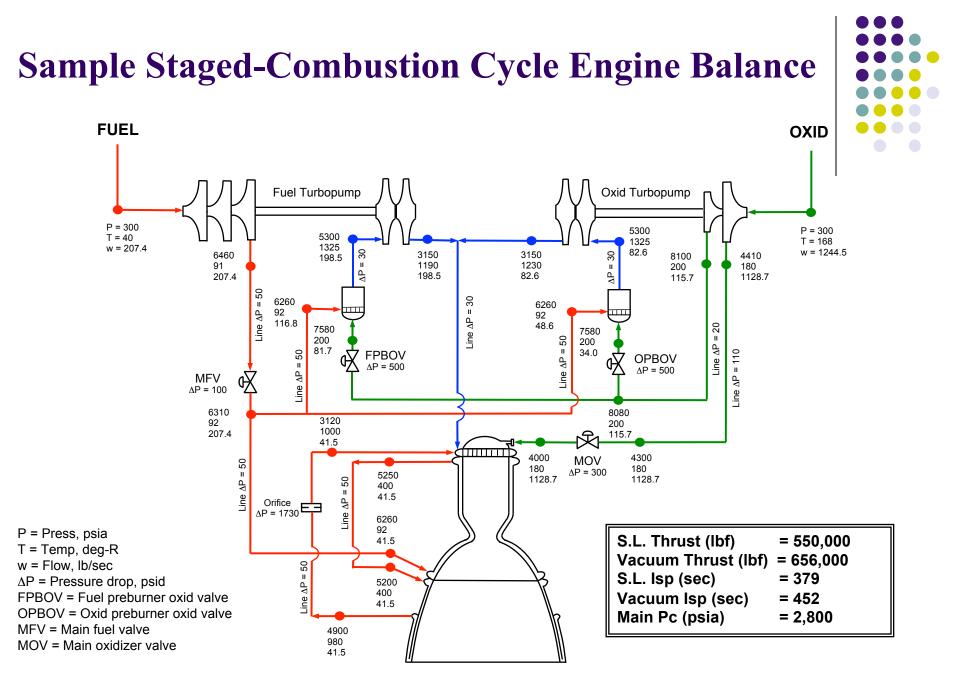
Rockets go into Space

- Imagining space flight (Tsiolkovsky)
- Flying to space from German perspective (Oberth, von Braun)
- Flying to space today is still the same

http://www.v2rocket.com

Rockets go into Space

- Routine spaceflight without people
- Routine spaceflight with people
- How about we are dedicated to studying spaceflight?
- Laboratory of Spacecraft Environment Interaction Engineering
 - Space Engineering International Course



Rocket System Development

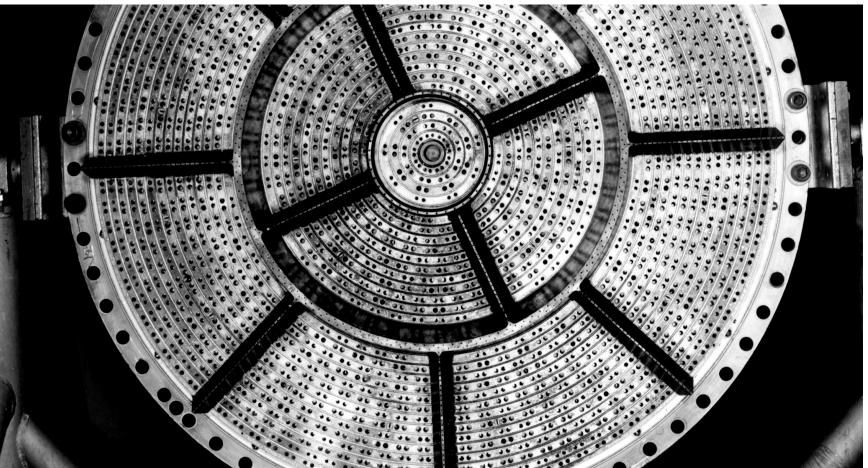
- Systems engineering was developed to make rockets reliable
 - from 80% failure to 80% success in 10 years
 - read the book "The Secret of Apollo" by Stephen Johnson
- Systems engineering helps show a system level perspective
- What does a rocket system level perspective look like?

LE-7A Staged Combustion Cycle

LE-7液体水素ターボポンプ (H-11ロケット第1段主エンジン)

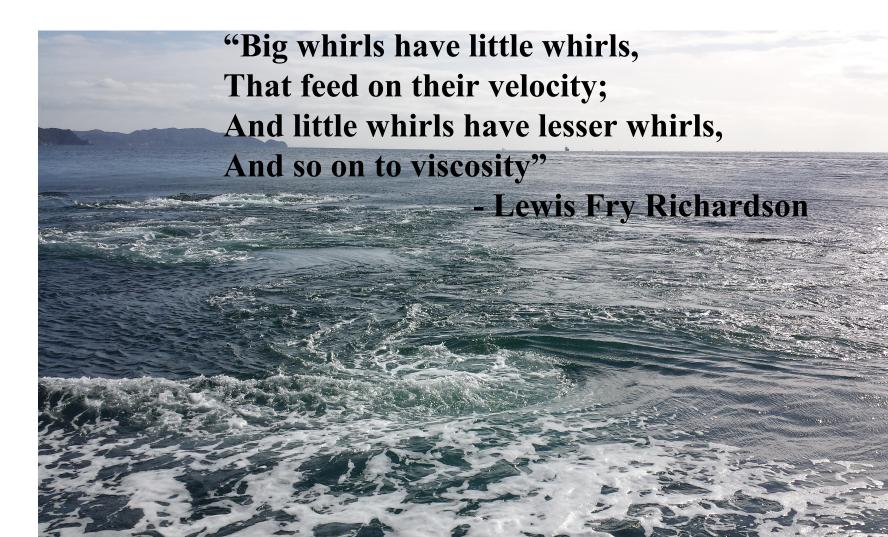
- ロケットエンジンの燃焼を持続させるためには、高温高圧の燃焼室の中に休みなく「推進薬」を押し込んでやる必要があります。このためには、「推進薬」の圧力を前もって燃焼室圧以上に加圧しなくてはなりません。ロケットのタンク全体を加圧する方法もありますが、丈夫なタンクが必要となり、重くなってかないません。
- そこで、「推進薬」が燃焼室に入る直前に、必要な分だけ「昇圧ポンプ」で加圧する方法が考え出されました。最近の大型高性能ロケットでは、ほとんどこの「ターボポンプ方式」が使われています。「ターボポンプ」とは、回転運動によって動く「昇圧ポンプ」を指しています。
- 「ターボポンプ」の原理は、自動車の「ターボチャージャー」と似ていますが、扱う流体、圧力、流量、そして馬力が全く異なります。展示した「液体水素用ターボポンプ」は、毎秒ドラム缶2本半分(500リットル)の液体水素を300気圧まで加圧します。このために、回転部は毎秒700回、回転します。外周部の速度は毎秒550mに達し、空気中であれば音速をはるかに超える速さです。このポンプを働かせる動力は、組み込まれた「タービン」で作り出します。軸馬力は24000馬力で、タービンの小羽根(2×3cm)1枚がおよそ400馬力を発生する計算になります。「ターボポンプ」の重さは、約200kgでお相撲さん1人程度です。

Thinking in Systems


- A way to see systems development holistically
- The system is more than the sum of its parts (synergy)
 Thinking about internal and external interconnections
- More than technology development or systems engineering
 includes system behavior
 - viewpoints of people involved in lifecycle of product
 - zoom in and zoom out to see the forest and the trees

• The system, in this case, is a rocket that goes to space

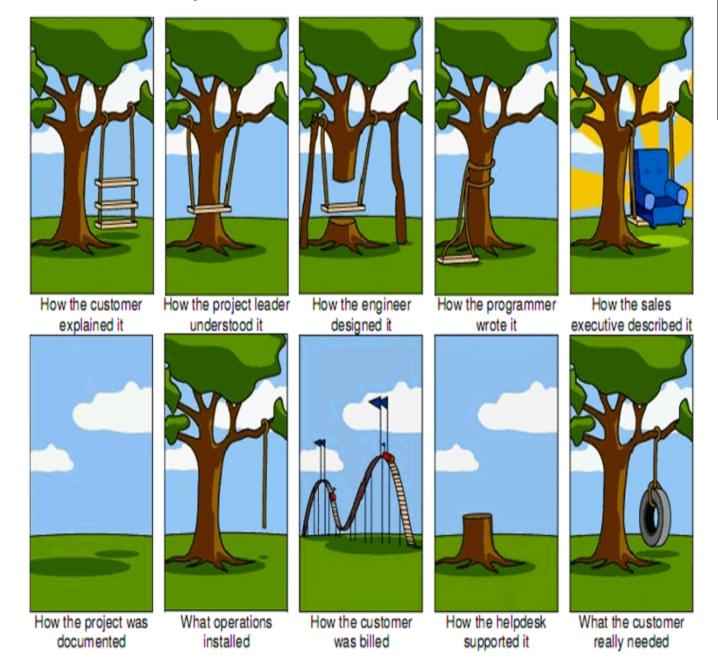
F-1 Rocket Fuel Injector (from Saturn V)


Notice that the injectors are not uniform Injector design is part art, part science Design is important to prevent combustion instability and explosion

It's All About the System Boundaries

• is everything interconnected, or isn't it?

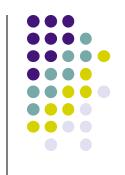
Onaruto Bridge Whirlpools


The Engineering Process Needs Interpreters

People have intuition and judgment that the process doesn't have

- People can zoom in and zoom out
- People can have a holistic view of uncertainty, risk and their implications in decision making
- People can see interconnections between the parts
- People can collaborate
- People have different perspectives

Perspectives Vary...



Collaborative Systems Thinking

- MIT model developed for aerospace systems
- Emergent behavior of teams resulting from the interactions of team members
- Utilizes a variety of thinking styles, design processes, tools, and communication media
- Considers systems attributes, interrelationships, context and dynamics towards executing systems design
- A recommendation for engineering education

IEEE Article on Engineering Education, 1992

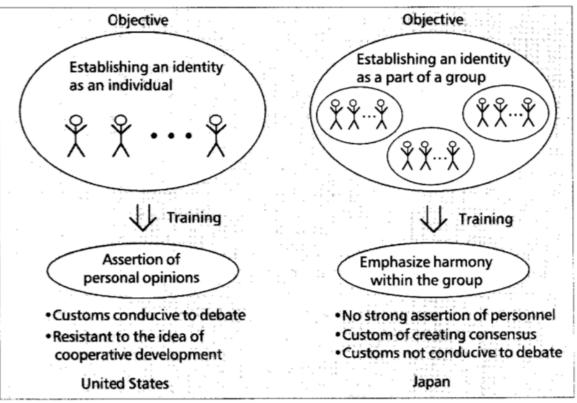


Figure 2. Fundamental goals of American and Japanese societies since World War II.

100割3118、細が25%10%10~ボボンブ」の重さは、約200㎏でお相乗るか17×150×25 馬力を発生する計算になります。「ターボボンブ」の重さは、約200㎏でお相乗るか17×150×25

A Systems View of Spaceflight

- Space is fascinating
- Rockets can get you there
- Systems view makes rockets possible
- We can all think in systems
- Arigato gozaimasu

Turbopump cutaway view