目次

1	序	論······1
	1.1	はじめに
	1.2	研究背景
	1.3	1 次放電および 2 次放電発生メカニズム
	1.3	3.1 1次放電発生メカニズム ····································
	1.3	3.2 2 次放電発生メカニズム ······5
	1.4	研究状況
	1.5	研究目的
2	研	究手法
	2.1	太陽電池アレイクーポン
	2.2	宇宙環境模擬真空チャンバー
	2.3	実験システム及び実験回路の概要
	2.4	波形データ取得装置
	2.5	放電発生箇所取得システム
	2.6	分光測定装置
	2.7	電子ビーム銃
	2.8	表面電位計
	2.9	ブローオフ電流
3	高	電圧パルス電源を用いた放電発生手法
	3.1	高電圧パルス電源を用いた放電発生手法の発生メカニズム
	3.2	高電圧パルス電源
	3.3	ノイズ低減のための工夫
	3.3	3.1 MOS 式高電圧パルス電源の作製
	3.3	3.2 コンデンサーの最適値
	3.3	3.3 回路以外でのノイズ低減の工夫
	3.4	1 次放電誘発試験回路および試験方法
	3.5	試験結果
	3.6	まとめ
4	レ	ーザを用いた放電発生手法
	4.1	レーザを用いた放電発生手法の原理
	4.2	レーザの仕様

4.3	1次	放電誘発試験回路、及び試験方法
4.4	試懸	
4.5	まと	z Ø
4.6	開系	ěした放電発生手法の比較45
5 ,	人工衛	星帯電放電試験への適用
5.1	放電	電プラズマパラメータ取得試験
4	5.1.1	研究動向
4	5.1.2	試験目的
4	5.1.3	試験回路および試験方法
4	5.1.4	試験結果
5	5.1.5	まとめ
5.2	WG	1 グラウティングクーポン試験
ć	5.2.1	研究動向
ć	5.2.2	試験目的
4	5.2.3	試験回路及び試験方法
4	5.2.4	試験結果62
4	5.2.5	まとめ
5.3	フラ	ラッシュオーバー伝搬速度測定試験
4	5.3.1	研究動向
4	5.3.2	試験目的
ŝ	5.3.3	試験回路及び試験方法
ć	5.3.4	試験結果
ŝ	5.3.5	再試験の回路及び結果
ć	5.3.6	まとめ
5.4	宇宙	f用ケーブル試験82
5	5.4.1	研究動向
5	5.4.2	試験目的
5	5.4.3	試験回路及び試験方法
5	5.4.4	試験結果
4	5.4.5	まとめ
5.5	衛星	星帯電放電試験への適用のまとめ87
6 ∦	総括 …	
6.1	まと	こめ
6.2	今後	後の課題

7	参考文献	39
8	謝辞	91